Integrating In Silico and In Vitro Analysis of Peptide Binding Affinity to HLA-Cw*0102: A Bioinformatic Approach to the Prediction of New Epitopes
نویسندگان
چکیده
BACKGROUND Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102. METHODOLOGY/FINDINGS Using an in-house, flow cytometry-based MHC stabilization assay we generated novel peptide binding data, from which we derived a precise two-dimensional quantitative structure-activity relationship (2D-QSAR) binding model. This allowed us to explore the peptide specificity of HLA-Cw*0102 molecule in detail. We used this model to design peptides optimized for HLA-Cw*0102-binding. Experimental analysis showed these peptides to have high binding affinities for the HLA-Cw*0102 molecule. As a functional validation of our approach, we also predicted HLA-Cw*0102-binding peptides within the HIV-1 genome, identifying a set of potent binding peptides. The most affine of these binding peptides was subsequently determined to be an epitope recognized in a subset of HLA-Cw*0102-positive individuals chronically infected with HIV-1. CONCLUSIONS/SIGNIFICANCE A functionally-validated in silico-in vitro approach to the reliable and efficient prediction of peptide binding to a previously uncharacterized human MHC allele HLA-Cw*0102 was developed. This technique is generally applicable to all T cell epitope identification problems in immunology and vaccinology.
منابع مشابه
In silico identification of epitopes from house cat and dog proteins as peptide immunotherapy candidates based on human leukocyte antigen binding affinity
The objective of this descriptive study was to determine Felis domesticus (cat) and Canis familiaris (dog) protein epitopes that bind strongly to selected HLA class II alleles to identify synthetic vaccine candidate epitopes and to identify individuals/populations who are likely to respond to vaccines. FASTA amino acid sequences of experimentally validated allergenic proteins of house cat and d...
متن کاملMolecular Identification of Pre-Existing Immunityin Human against H9N2 Influenza Viruses Using HLA-A*0201 Binding Peptides
Background and Aims: The contribution genetic and antigenic diversity of H9N2 influenza viruses in evading from immune responses, cytotoxic T lymphocytes (CTL) epitopes in hemagglutinin (HA) protein restricted by HLA binding peptides was identified. Materials and Methods: Phylogenetic analyses were carried out for all of full length HA and deduced amino acid sequences of H9N2 viruses available ...
متن کاملIn silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor
The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...
متن کاملCoupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative...
متن کاملIn Silico Perspectives on the Prediction of the PLP’s Epitopes involved in Multiple Sclerosis
Background: Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). The main cause of the MS is yet to be revealed, but the most probable theory is based on the molecular mimicry that concludes some infections in the activation of T cells against brain auto-antigens that initiate the disease cascade.Objectives: The Purpose of this research is the...
متن کامل